A 4/3-approximation algorithm for finding a spanning tree to maximize its internal vertices

نویسندگان

  • Xingfu Li
  • Daming Zhu
چکیده

This paper focuses on finding a spanning tree of a graph to maximize the number of its internal vertices. We present an approximation algorithm for this problem which can achieve a performance ratio 4 3 on undirected simple graphs. This improves upon the best known approximation algorithm with performance ratio 5 3 before. Our algorithm benefits from a new observation for bounding the number of internal vertices of a spanning tree, which reveals that a spanning tree of an undirected simple graph has less internal vertices than the edges a maximum path-cycle cover of that graph has. We can also give an example to show that the performance ratio 4 3 is actually tight for this algorithm. To decide how difficult it is for this problem to be approximated, we show that finding a spanning tree of an undirected simple graph to maximize its internal vertices is Max-SNP-Hard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem

The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...

متن کامل

An efficient algorithm for finding the semi-obnoxious $(k,l)$-core of a tree

In this paper we study finding the $(k,l)$-core problem on a tree which the vertices have positive or negative weights. Let $T=(V,E)$ be a tree. The $(k,l)$-core of $T$ is a subtree with at most $k$ leaves and with a diameter of at most $l$ which the sum of the weighted distances from all vertices to this subtree is minimized. We show that, when the sum of the weights of vertices is negative, t...

متن کامل

Prize-Collecting TSP with a Budget Constraint

We consider constrained versions of the prize-collecting traveling salesman and the minimum spanning tree problems. The goal is to maximize the number of vertices in the returned tour/tree subject to a bound on the tour/tree cost. We present a 2-approximation algorithm for these problems based on a primal-dual approach. The algorithm relies on finding a threshold value for the dual variable cor...

متن کامل

Minimum vertex ranking spanning tree problem for chordal and proper interval graphs

A vertex k-ranking of a simple graph is a coloring of its vertices with k colors in such a way that each path connecting two vertices of the same color contains a vertex with a bigger color. Consider the minimum vertex ranking spanning tree (MVRST) problem where the goal is to find a spanning tree of a given graph G which has a vertex ranking using the minimal number of colors over vertex ranki...

متن کامل

An approximation algorithm for maximum internal spanning tree

Given a graph G, the maximum internal spanning tree problem (MIST for short) asks for computing a spanning tree T of G such that the number of internal vertices in T is maximized. MIST has possible applications in the design of cost-efficient communication networks and water supply networks and hence has been extensively studied in the literature. MIST is NP-hard and hence a number of polynomia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1409.3700  شماره 

صفحات  -

تاریخ انتشار 2014